Использование электронной аппаратуры для получения изображений основывается на тех же известных свойствах света, на которых базируется традиционная микрофотография со съемкой на фотопленку. Однако, возможность осуществлять настройку баланса белого для достижения цветового баланса изображения является уникальным свойством электронных формирователей изображения, не вполне интуитивно понятным для исследователя, стремящегося получить цифровые снимки из микроскопа.
Рис. 1. Коррекция баланса белого с 3200К до 5600K для освещения
При критическом сравнении изображения, сформированного цифровым способом и наблюдаемого в окуляры микроскопа, или «живого изображения» — на мониторе компьютера, цветовые отклонения, зачастую, поражают, а попытки устранить различия могут оказаться тщетными. Одна из причин такого различия состоит в том, что в процессе формирования изображения происходит значительная подсознательная аккомодация зрительной системы человека к изменениям условий визуализации, а проблемы цветопередачи, обычно, не осознаются до момента регистрации и оценки статической версии изображения, часто в различных условиях просмотра.
Для подробного ознакомления с медицинской и исследовательской техникой основных мировых производителей оптических систем и сопутствующего оборудования посетите наш каталог или свяжитесь с нашими специалистами и получите полную профессиональную консультацию по любым, имеющимся у Вас, вопросам.
На рисунке 3 представлена серия цифровых изображений, снятых в поле зрения одного микроскопа при различных цветовых температурах освещения. В качестве образца выбрана монослойная культура адгезивных клеток фибробласта кожи индийского оленя-мунтжака, наблюдаемых по методу дифференциально-интерференционного контраста (ДИК), со сравнительно малым (одна двенадцатая длины волны) сдвиговым замедлением. В том случае, когда призма Номарского настроена на достижение показанной на рисунке 1 разности длин оптических путей, а на пути светового потока установлен светофильтр, повышающий цветовую температуру вольфрамово-галогенной лампы, приблизительно, с 3200K до 5500K (дневной свет), в окулярах микроскопа культура выглядит окрашенной в нейтральный серый цвет.
Без светофильтра-преобразователя, ДИК-образец на рисунке 1 выглядит нейтрально-серым, но при наблюдении через окуляры микроскопа демонстрирует глобальный желтый оттенок, характерный при освещении лампами накаливания. На снимке, сделанном цифровой камерой с выключенной функцией баланса белого, и установленной в описанную конфигурацию микроскопа, все изображение также имеет желтый оттенок (рисунок 1(a)). Установленный в оптическую систему цветоконверсионный светофильтр окрашивает изображение образца в окулярах в легкий голубоватый тон, а соответствующие цифровые изображения, полученные без коррекции баланса белого, сохраняют или усиливают этот цветовой сдвиг (рисунок 1(c)). Применение алгоритмов коррекции баланса белого к изображениям, полученным при освещении лампами накаливания или при дневном свете, устраняют затенение, вызванное эффектами цветовой температуры (см. рисунок 1(b)). Следует отметить, что для получения изображения со сбалансированным тональным качеством, алгоритм коррекции использует разные корректирующие значения, определяемые цветовой температурой освещения. Освещение вольфрамовой лампой накаливания требует увеличения синей и уменьшения красной составляющих спектра, а для дневного света справедливо обратное.
Достижение правильного цветового баланса изображений, получаемых при помощи цифровых камер, работающих совместно с оптическими микроскопами, зависит от целого ряда факторов, и начинается с установления правильного режима освещения и точной юстировки микроскопа, достигая кульминации на этапе формирования изображения. Настройка баланса белого для получения требуемого изображения играет исключительно важную роль. Эту функцию можно использовать двояко, — как для наиболее достоверного воспроизведения изображения образца, так и для намеренного изменения данного изображения, с целью устранения паразитных цветовых оттенков, появляющихся в результате подготовки образца в процессе исследования.
Концептуально, предварительная (грубая) настройка баланса белого нужна для приведения выходного сигнала фотоприемника в соответствующий диапазон, соответственно общим условиям освещения (подобно выбору типа пленки). Точная настройка чем-то похожа на использование цветовых корректирующих светофильтров в пленочной фотографии. Даже если источник освещения и характеристика фотоприемника согласованы, свет, проходя через микроскоп, обычно, изменяется образцом и другими элементами оптической системы, причем, такие изменения, в некоторой степени, непредсказуемы. Поэтому, цветовой баланс окончательного изображения может отличаться от требуемого результата. Очень важно понимать, что различные образцы и, возможно, локальные участки образца, уникальным образом влияют на формирующий изображение световой пучок. Таким образом, при необходимости иметь точный цветовой баланс, такие параметры, как настройка баланса белого необходимо тщательно контролировать.
Общая концепция цветового баланса изображений
Формирование изображения в оптической микроскопии основывается на фундаментальных свойствах света, включая интенсивность и спектральные характеристики, создающие зрительно воспринимаемый цвет, а также, связанное с этими характеристиками, значение цветовой температуры. Цветовую температуру можно точно определить и инструментально измерить относительно стандартного эталонного источника освещения. Однако, невозможно достоверно предсказать, как будет выглядеть каждый образец при данных параметрах визуализации. Более того, источники света с одинаковой цветовой температурой могут резко различаться по спектральному составу и формировать, в значительной степени, различные изображения при одинаковых условиях наблюдения. Ситуация осложняется широким спектром эффектов, которые могут привноситься в оптическую систему микроскопа дополнительными средствами улучшения контрастности. Светлое поле, темное поле, фазовый контраст, ДИК, поляризованный свет, модуляционный контраст Хоффмана и флуоресцентное освещение — все перечисленные методы проявляют необходимость применения корректировки цветового баланса, зачастую, индивидуально для образца и условий освещения.
Рис. 2. Ошибки баланса белого при использовании методов улучшения контрастности
На рисунке 2 представлено несколько цифровых изображений, полученных при различных значения цветовой температуры и методах улучшения контрастности. На рисунке 2(a) показан окрашенный эозином и гематоксилином тонкий срез тестикулярного рака человека (семиномы) в вольфрамово-галогенном освещении. Видно, что общий желтый тон, распространяющийся по всему изображению и проявляющий окрашенные фрагменты, не соответствует изображению с правильным цветовым балансом. Это распространенная ошибка, возникающая в светлопольной микроскопии тогда, когда на оптическом пути света не устанавливается цветной светофильтр преобразования дневного света. Введение в оптический путь синего фильтра дневного света, без коррекции баланса белого цифровой камеры, может привести к окрашиванию всего цифрового изображения в голубоватые тона (см. рисунок 2(b)). Представленное изображение монослойной культуры живых клеток HeLa демонстрирует синий оттенок, возникающий при неправильном цветовом балансе камеры. Применение алгоритмов баланса белого в программном обеспечении для получения изображений дает изображение в оттенках серого, наблюдаемое в окулярах микроскопа.
В том случае, когда освещение микроскопа не сбалансировано до цветовой температуры дневного света, а в камере неправильно настроен баланс белого, описанные проблемы характерны для изображений, полученных и по другим методам улучшения контрастности. На рисунках 2(с), 2(d) и 2(e) представлены изображения, полученные, соответственно, по методу дифференциально-интерференционного контраста (ДИК), в поляризованном свете и с использованием модуляционного контраста Хоффмана. На всех изображениях значения цветового баланса сдвинуты в сторону теплых (желтых) тонов. На изображении, полученном по методу дифференциально-интерференционного контраста (рисунок 4(с)), детали выглядят грязноватыми, а обычные серые тона представлены различными оттенками коричневого и красного. Аналогично, изображение рекристаллизованной мочевины в поляризованном свете (рисунок 2(d)) выглядит чрезмерно зеленым, а полученное по методу модуляционного контраста Хоффмана изображение радиолярии (рисунок 2(e)) имеет, несомненно, зеленый фон (и блики). Флуоресцентные изображения (рисунок 2(f)), обычно, не создают проблем с цветовым балансом, главным образом, потому, что ограничены узким диапазоном длин волн.
Феномен изменения цветового баланса или цветопередачи хорошо знаком большинству людей по повседневной деятельности и, обычно, воспринимается, как естественное явление, не требующее никакого вмешательства.
Например, всем хорошо знаком золотистый тон дневного света вблизи заходящего солнца, как и тот факт, что одни и те же цвета при свете свечи и во флуоресцентном офисном освещении существенно отличаются. Зрительный аппарат человека объединяет сенсорную реакцию глаз с интерпретацией сигналов мозгом и, тем самым, согласует изменения спектрального состава и интенсивности света. В результате, белые объекты интерпретируются, как белые, в широком спектре режимов освещения. Как правило, если белый цвет воспринимается правильно, то остальные цвета и оттенки тоже интерпретируются верно. И, напротив, формирователи изображений, будь то традиционная фотопленка или современная цифровая фотокамера, реагируют (формируют ответный сигнал) на фиксированное освещение в момент экспонирования. Качество воспроизведения цвета на формируемом изображении зависит от конкретной реакции цветочувствительных слоев фотопленки или от чувствительности отдельных цветовоспринимающих элементов (пикселей) твердотельного (полупроводникового) фотоэлемента. При обоих методах съемки цветовой баланс изображения можно изменять за счет установки цветофильтров в осветительную или формирующую изображение оптическую систему. Однако, цифровой метод обладает особым дополнительным преимуществом — возможностью прецизионной электронной настройки выходного сигнала фотоприемника.
Основы настройки баланса белого в цифровой камере
Воспринимающий элемент, использующийся для регистрации изображений, будь то традиционная фотопленка, или цифровое устройство формирования изображений, в общем случае, конструируются или настраиваются так, чтобы их базовая реакция соответствовала основным категориям освещения. Фотографические пленки, например, выпускаются в двух основных вариантах, — для дневного света и для освещения, создаваемого вольфрамовыми лампами накаливания. Точная настройка реакции пленки для критических приложений осуществляется за счет использования соответствующих светофильтров. Характеристики чувствительности твердотельных фотоприемников, которыми, обычно, являются приборы с зарядовой связью (ПЗС) или комплементарные металл-оксид-полупроводниковые (КМОП) фотодиодные приемники, можно электронным способом настроить на соответствие самым различным источникам освещения.
Отдельные светочувствительные элементы ПЗС или КМОП фотоприемников по своей природе монохромны. Их чувствительность к цвету достигается за счет последовательного пропускания падающего света через красный, зеленый и синий светофильтры на всю поверхность фотоприемника. В результате получаются отдельные изображения для каждого цвета, которые затем объединяются. Или же, падающий свет пропускается через миниатюрные тонкопленочные полимерные фильтры, которые размещаются в мозаичном порядке поверх каждого пикселя матрицы. Наиболее часто фильтры располагаются в виде упорядоченной мозаичной матрицы красных, зеленых и синих фильтрующих элементов, с повторяющейся G-R-G-B последовательностью, над всей матрицей светочувствительных элементов. Такое расположение, называемое фильтрующей мозаикой Байера (см. рисунок 3(a)), содержит удвоенное, по отношению к красным и синим, количество зеленых светофильтров. Дополнительные зеленые пиксели позволяют приблизить цветочувствительность фотоприемника к цветочувствительности зрительного аппарата человека, пик которой приходится на зеленую область спектра (на волну с длиной около 550 нанометров; рисунок 3(b)) и, таким образом, облегчают получение изображений с визуально приемлемым цветовым балансом. Индивидуальная настройка амплитуд красного, зеленого и синего сигналов от соответствующих пикселей (или одноцветных изображений) светочувствительной матрицы осуществляется за счет функции контроля баланса белого, позволяющей достичь правильного цветового баланса формируемого изображения. В некоторых камерах описанные настройки и регулировки выполняются программно, вместо аппаратного способа, либо совместно с ним.
Рис. 3. Мозаичная структура фильтрующей матрицы Байера и спектральные кривые
Несмотря на то, что хорошо знакомые многим микроскопистам цифровые камеры общего назначения обладают, как правило, несколько ограниченными возможностями, они все шире адаптируются для установки на микроскопы, в качестве экономичной альтернативы специализированным системам получения изображений научно-исследовательского класса. Поскольку методики использования цифровых камер для общепринятых целей можно распространить на понимание таких факторов, как настройка баланса белого в применении к микроскопии, целесообразно сначала рассмотреть нетехнические аспекты. Основные положения, относящиеся к настройке баланса белого в общих фотографических приложениях и для получения изображений в микроскопии, одинаковы.
Обычно, стандартные цифровые камеры предоставляют пользователю ряд различных вариантов настройки баланса белого в виде выбираемых «предварительно заданных установок». Такие предварительно заданные установки (далее, для краткости, «предустановки») могут соответствовать различным категориям освещения, например, дневному (в солнечную или облачную погоду), от ламп накаливания, флуоресцентному, либо иным вариантам. Многие камеры позволяют выполнять точную настройку предустановленных значений, что позволяет достичь более точного цветового баланса изображений. Некоторые камеры предоставляют дополнительную возможность настроить баланс белого по белой карточке, стене или иному объекту, который, будучи включенным в изображение, должен представляться белым. На практике, камера располагается так, что белый объект заполняет поле зрения, а настройка баланса белого инициируется установкой переключателя, либо, выбором параметра в меню настройки (в зависимости от конкретной камеры), после чего система настраивает фотоприемник камеры на воспроизведение упомянутого объекта, как белого.
Настройка по определенному белому объекту выполняется в тех же условиях освещения, в которых проводится съемка, и способна обеспечить высокоточную калибровку цветового баланса. Однако, при изменении освещения описанную процедуру необходимо повторить. Опытные фотографы, чтобы достичь желаемого эстетического эффекта, часто видоизменяют свои снимки, используя несоответствующие освещению настройки баланса белого. Например, тон изображения можно сделать холоднее или теплее того, который оно имело бы при съемке с «правильным» балансом белого. Если цель состоит в точном воспроизведении объекта съемки, такие эффекты, разумеется, рассматриваются, как ошибки, аналогичные использованию пленки, сбалансированной для дневного освещения, в условиях освещения лампами накаливания, и наоборот.
Популярный метод достижения цветового баланса, которого следует избегать в критически важных случаях, в бытовых камерах называется «автоматическая настройка баланса белого». Этот метод предназначен для применения к полю изображения в процессе съемки, и представляет собой оценку всего поля зрения, усреднение текущих экспозиционных чисел по цветовым оттенкам и попытку усреднить, или исключить, любое результирующее искажение цвета. Недостаток метода автоматической балансировки состоит в том, что имеющиеся в любом поле зрения значения цветовой интенсивности представляют собой «усредненное» распределение цвета, которое комбинируется для формирования нейтрального серого или белого оттенка. В действительности, когда суммарный отклик пикселей не аналогичен запрограммированному (расчетному) общему среднему, выполненная камерой настройка баланса белого не даст точного воспроизведения цвета.
Типичные образцы, наблюдаемые в микроскоп, весьма сильно различаются по цветовому распределению и часто проявляют один, преобладающий цвет (особенно, при флуоресценции). Весьма вероятно, что автоматическая настройка баланса белого на образце, проявляющем превалирующую красную окраску (например, биологической ткани), будет давать цветовой баланс, существенно отличный от полученного с использованием той же процедуры на окрашенном в белый цвет препарате. Вероятнее всего, ни в том, ни в другом случае точное представление образца получить не удастся. Попытки сбалансировать выходную характеристику фотоприемника на усредненный результирующий цветовой тон (значение) будут давать существенно различные результаты на различных образцах, в особенности, когда данное поле зрения окрашено в резкие или доминирующие цвета. Разумеется, существуют образцы, дающие приемлемые результаты с автоматической настройкой баланса белого (вероятнее всего, с большой долей белых или серых участков), однако, для повсеместного использования, такой методике недостает воспроизводимости результатов.
Методы настройки баланса белого в микроскопии
Из рассмотрения различных вышеупомянутых методов оптимизации баланса белого становится очевидным, что некоторые из них не удовлетворяют ограничениям и требованиям оптической микроскопии. Использование предустановленных значений для конкретных типов освещения предполагает, что характеристики источника света неизменны и имеют стандартные значения цветовой температуры и других спектральных параметров. При использовании в микроскопии вольфрамово-галогенных ламп, общепринято варьировать напряжение их питания, с целью управления интенсивностью света или для минимизации тепловыделения. При этом происходят изменения цветовой температуры освещения, ведущие к неправильному цветовому балансу, если для цифровой камеры используется стандартное предустановленное значение для освещения вольфрамовыми лампами. Дополнительным источником непостоянства цветопередачи являются изменения цветовых характеристик лампы, вызванные ее старением на протяжении срока эксплуатации.
Аналогичные проблемы имеют место при использовании источников света, оптимизированных в диапазоне цветовых температур дневного освещения (около 5500K). И не только потому, что цветовая температура «дневного света» непостоянна, но и в силу крайне ограниченного числа источников, в точности имитирующих спектральные характеристики дневного света. Теоретически, эти трудности, по крайней мере, частично, можно преодолеть за счет автоматической коррекции минимальных флуктуаций освещения, однако, зачастую, другие проблемы делают такой подход нежелательным. При автоматической оценке поля изображения, локализованные неоднородности образца могут порождать существенные нарушения цветового баланса. В общем случае, наилучший подход для большинства приложений микроскопии состоит в ограничении оценки баланса белого тщательно выбранной областью изображения или другим подходящим эталоном.
Рис. 4. Выделение точки и области для настройки баланса белого
Как правило, основная цель использования цифровых устройств для получения цветных изображений в микроскопии состоит в получении правильного цветового баланса, с целью верного изображения образца. Умышленные отступления от этого принципа делаются, обычно, для того, чтобы исправить нежелательные цветовые оттенки, возникающие в результате препарирования образца. В большинстве своем, цифровые камеры научно-исследовательского уровня, включая специально предназначенные для микроскопии, рассчитаны на настройку баланса белого по соотнесению с некоторым фиксированным цветовым значением. В случае освещения проходящим светом, выбирается подходящий участок поля образца (обычно, белый или нейтрально-серый), или же, настройка производится только по освещенному полю, без образца в оптическом пути света. Для настройки баланса белого в микроскопии с отраженным светом, вместо образца на предметный столик микроскопа можно поместить белую или нейтрально-серую карточку (или кусочек бумаги). Настройка баланса белого выполняется путем измерения света, отраженного от поверхности белой карточки.
В большинстве своем, цифровые камеры для микроскопии управляются программой, установленной на главном компьютере и, зачастую, настроены на взаимодействие с рядом функций микроскопа. Например, в отношении способа достижения баланса белого, программный интерфейс для цифровой камеры типичен для предлагающихся сегодня коммерческих продуктов. В активированном окне (пользовательского интерфейса) настройки баланса белого становятся доступными варианты выбора области поля зрения для оценки этого баланса управляющей системой камеры. «Живое» изображение на дисплее монитора необходимо тщательно оценить на предмет соответствующей белой или нейтрально-серой области, которая будет служить эталоном для фотоприемника формирователя изображений. В том случае, когда цветовые оттенки изображения на мониторе отличаются от цветового баланса, наблюдаемого в окулярах микроскопа, баланс белого камеры необходимо настроить так, чтобы изображение образца было точным. В идеальном случае, при выборе правильной области образца (для настройки баланса белого), система настройка баланса белого камеры уберет паразитный цветовой оттенок с изображения на мониторе.
На рисунке 4 представлено несколько типичных примеров областей образцов, которые можно использовать для настройки алгоритмов регулировки баланса белого цифровой камеры. В качестве образцов использованы: живая культура фибробластов, визуализированная по методу дифференциально-интерференционного контраста (рисунок 4(a)), четырехкратно окрашенный тонкий срез крахмальных зерен в ткани картофеля в светлопольном освещении (рисунок 4(b)), и эритроциты человека, визуализированные по методу фазового контраста (рисунок 4(с)). На всех изображениях, участки, пригодные для настройки баланса белого по вышеупомянутому методу, очерчены красными прямоугольниками. Желтые стрелки указывают те точки изображений, которые могут обеспечить удовлетворительную калибровку баланса белого при выборе единичного пикселя.